关闭→
当前位置:文萃集>好好学习>毕业论文>多孔金属材料的制备方法及应用研究论文

多孔金属材料的制备方法及应用研究论文

文萃集 人气:1.34W

多孔金属材料是金属基体与孔隙共同组成的复合材料,也是一种新型的集结构和功能于一体的材料,因其具有独特的性质而备受广大科研工作者的热切关注. 它不仅比重低、强度高,而且具有消音、减振、耐热、渗透等诸多良好的性能,因而在化工、建筑、国防、医学、环保等领域有广泛的应用.

多孔金属材料的制备方法及应用研究论文

从多孔金属材料的性质考虑,多孔金属既承接了金属方面的性能,又具有多孔材料方面的性能. 作为金属材料,相比玻璃、陶瓷、塑料等非金属,它具有耐高温、良好的导电导热性、高强度,易加工成型的特点; 作为多孔材料,它比致密金属有诸多良好的性能,如轻质、比表面积大、吸能好等. 根据金属的状态和孔隙形成的来源,逐渐产生了许多制备多孔金属材料的工艺,有些在原有的工艺条件下进行了优化和创新,并取得了一定的成效.

1 多孔金属材料的制备方法

从多孔金属材料的定义上讲,它是多孔和金属两个词的统一体,这给科研工作者提供了制备多孔金属的着手点,从而衍生出一系列制备多孔金属的工艺,包括材料的选择、孔隙结构的来源、设备调整、工艺参数的确定等方面. 金属的状态可以分为液态、固态、气态和离子态,而气孔的产生通常是以直接和间接的方式,两者相结合从而产生了不同的制备工艺. 传统上可分为铸造法、金属烧结法、沉积法等.

1. 1 铸造法

铸造法分为熔融金属发泡法、渗流铸造法和熔模铸造法等.

1. 1. 1 熔融金属发泡法

熔融金属发泡法包括气体发泡法和固体发泡法. 此方法的关键措施是选择合适的增粘剂,控制金属粘度和搅拌速度,以优化气泡均匀性和样品孔结构控制的程度. 此法主要用于制备泡沫铝、泡沫镁、泡沫锌等低熔点泡沫金属. 对于熔融金属发泡法,当前研究较多的是泡沫铝. 李言祥对泡沫铝的制备工艺、泡沫结构特点及气孔率方面进行了深入的实验研究; 于利民等人根据采用此法生产泡沫铝在国内外泡沫金属的发展形势,总结并探讨了其制备工艺及优缺点.

1) 气体发泡法

气体发泡法指的是向金属熔体的底部直接吹入气体的方法. 为增加金属熔体的粘度,需要加入高熔点的固体小颗粒作为增粘剂,如Al2O3和SiC 等. 吹入的气体可选择空气或者像CO2等惰性气体. 虽然设备简单、成本低,但孔隙尺寸和均匀程度难以控制. 徐方明等用这种方法制备出了孔隙率为90!以上的闭孔泡沫铝; 覃秀凤等介绍了该方法原理,并研究了增粘剂、发泡气体流量和搅拌速度等工艺参数对实验结果的影响.

2) 固体发泡法

固体发泡法即向熔融金属中加入金属氢化物的方法. 发泡剂之所以为金属氢化物,是因为它会受热分解,生成的气体逐渐膨胀致使金属液发泡,然后在冷却的过程中形成多孔金属. 增粘剂主要选择Ca粉来调节熔体粘度,发泡剂一般为TiH2 . 采用同样的方法原理,可以通过向铁液中加入钨粉末和发泡剂的方式生成泡沫铁,但很少有相关的文献报道shi T等人采用这种方法制备出了泡沫铝.

1. 1. 2 渗流铸造法和熔模铸造法

两种方法的相似之处在于都是将液态金属注入装有填料的模型中,构成多孔金属的复合体,然后通过热处理等的方式将杂质除去,经过冷却凝固得到终产物多孔金属; 区别在于前者模型中填充的是固体可溶性颗粒( 如NaCl、MgSO4等) 或低密度中空球,后者铸模由无机或有机塑料泡沫( 如聚氨酯) 和良好的耐火材料构成.

Covaciu M 等用渗流铸造法制备了开孔型和闭孔型的多孔金属材料, John Banhart用熔模铸造法制备了多孔金属,详细研究了产品结构、性能及应用. 用渗流铸造法制备的多孔金属,其孔隙率小于80!,常用来制备多孔不锈钢及多孔铸铁、镍、铝等合金,虽然用这种方法制备的多孔金属孔隙尺寸得到准确控制,但成本较高. 熔模铸造法制备的多孔金属成本也很高,孔隙率比前者高,但产品强度低.

1. 2 金属烧结法

金属烧结法包括粉末烧结法、纤维烧结法、中空球烧结法、金属氧化物还原烧结法、有机化合物分解法等.

1. 2. 1 粉末烧结法

粉末烧结法指的是金属粉末或合金粉末与添加剂按一定的配比均匀混合,压制成型,形成具有一定致密度的预制体,然后进行真空环境下高温烧结或钢模中加热的方式除去添加剂,最终得到多孔金属材料. 此法可用来制备多孔铝、铜、镍、钛、铁、不锈钢等材料. 通过粉末烧结法制备的多孔金属材料,其孔隙特性主要取决于采用的方法工艺和粉末的粒度.王录才等采用冷压、热压、挤压三种方式制备预制体,详细研究了铝在不同炉温下加热的发泡行为.根据所选添加剂的不同,粉末烧结法又分为粉末冶金法和浆料发泡法. 两者选用的添加剂分别为造孔剂和发泡剂.

造孔剂分为很多种,如NH4HCO3、尿素等. 陈巧富等用NH4HCO3作造孔剂,经过低温加热和高温烧结的方式制备出了多孔Ti-HA 生物复合材料,孔径范围100 ~ 500 μm,抗压强度高达20 MPa,可作为人体骨修复材料. 国外David C. D 等用尿素作造孔剂制备出了具有一定孔隙率的泡沫钛; JaroslavCapek等以NH4HCO3为造孔剂,用粉末冶金法制备出了孔隙率为34 !~ 51!的多孔铁,并作出了多孔铁在骨科应用方面的设想.关于发泡剂的选择,TiH2或ZrH2常作发泡剂制备多孔铝、锌,而SrCO3常作为发泡剂制备多孔碳钢. 李虎等用H2O2作发泡剂,用浆料发泡法制备出了多孔钛,经过对其力学性能测试和碱性处理获得了有望成为负重骨修复的理想材料.

1. 2. 2 纤维烧结法

纤维烧结法指金属纤维经过特殊处理后经过压制、成型、高温烧结的过程形成的多孔金属. 运用这种方法制备的多孔金属材料,其强度高于烧结法.

1. 2. 3 中空球烧结法

中空球烧结法指金属空心球粘结起来进行烧结,从而得到多孔金属材料的方法. 常用来制备多孔镍、钛、铜、铁等,制得的金属兼具闭孔和开孔结构.其中金属空心球的制备方法是: 用化学沉积或电沉积的方法在球形树脂表面镀一层金属,然后除去球形树脂. 特别的是,多孔金属的孔隙尺寸可以通过调整空心球的方式来进行控制.

1. 2. 4 金属氧化物还原烧结法

该方法旨在氧化气氛中加热金属氧化物获得多孔的、透气的、可还原金属氧化物烧结体,再在还原气氛中且低于金属的熔点温度下进行还原,从而得到开口的多孔金属. 这种方法可用来制备多孔镍、钼、铁、铜、钨等. 因为很难找到制备高孔隙率的多孔铁的方法,Taichi Murakami 等用炉渣中的氧化物发泡,并采用氧化还原法制备出了多孔铁基材料.

1. 2. 5 有机化合物分解法

将金属的草酸盐或醋酸盐等进行成型处理后,再在合适的气氛下加热烧结. 如草酸盐分解反应式为Mx( COO) y→xM + YCO2式中: M 为金属·金属的草酸盐分解释放CO2,在烧结体中形成贯通的孔隙. 在制备过程中金属有机化合物可以成型后加热分解,再进行烧结.

1. 3 沉积法

此法是指通过采用物理或化学的方法,将金属沉积在易分解的且具有一定孔隙结构的有机物上,然后通过热处理方法或其他方法除去有机物,从而得到多孔金属. 沉积法一般分为电沉积法、气相沉积法、反应沉积法等.

1. 3. 1 电沉积法

该法是以金属的离子态为起点,用电化学的方法将金属沉积在易分解的且有高孔隙率三维网状结构的有机物基体上,然后经过焙烧使有机物材料分解或用其他的工艺将其除去,最终得到多孔金属. 具体操作步骤为: 预处理、基体导电化处理、电镀、后续处理. 常用来制备多孔铜、镍、铁、钴、金、银等.国外Badiche X 等用这种方法对泡沫镍的制备及性能进行了深入研究; 单伟根等电沉积法制备了泡沫铁,确定了基体的热解方式对泡沫铁的结构性能方面造成不同的影响,并且确定了最佳实验条件. Nina Kostevsek 等研究了平板电极上和多孔氧化铝模板上的铁钯合金,并对二者的电化学沉积动力学进行了比较.

1. 3. 2 气相沉积法

该法是在真空状态下加热液态金属,使其以气态的形式蒸发,金属蒸气会沉积在固态的基底上,待形成一定厚度的金属沉积层后进行冷却,然后采用热处理方法或化学方法去除基底聚合物,从而得到通孔泡沫金属材料. 蒸镀金属可以为Al、Zn、Cu、Fe、Ti 等.

1. 3. 3 反应沉积法

反应沉积法,顾名思义指的是金属化合物通过发生反应,然后沉积在基体上的过程. 具体操作环节是,首先将泡沫结构体放置在含有金属化合物的装置中,加热使金属化合物分解,分解得到的金属沉积在多孔泡沫基体上,然后进行烧结去除基底,得到多孔金属. 通常情况下,金属化合物为羟基金属,在高温条件下发生分解反应,如制备多孔铁、镍等.

2 多孔金属材料的性能及应用

多孔金属材料可作为结构材料,也可作为功能材料. 同时结构决定性能,对于多孔金属而言,它的结构特点表现为气孔的类型( 开孔或闭孔) 、大小、形状、数量、分布、比表面积等方面. 多孔金属材料在航空航天、化学工程、建筑行业、机械工程、冶金工业等行业得到了广泛的应用,此外,在医学和生物领域也具有广阔的发展潜力. Qin Junhua等对多孔金属材料性能和用途两方面的研究进展做了重要阐述,并提出针对当前的形势,需要拓展多孔金属材料其他方面用途的必要性.

2. 1 结构材料

多孔金属材料具有比重小、强度高、导热性好等特点,常用作结构材料. 可作汽车的高强度构件,如盖板等; 可作建筑上的元件或支撑体,如电梯、高速公路的护栏等; 也可作为航天工业上的支撑结构,如机翼金属外壳支撑体、光学系统支架,或用来制作飞行器等. 最常用的是多孔铝. 魏剑等提到了多孔金属材料可用来制作节能门窗、防火板材等,实现了其在建筑领域的应用价值.

利用多孔金属材料的吸能性能,可制作能量吸收方面的材料,如缓冲器、吸震器等. 最常见的是多孔铝. 比如汽车的冲击区安装上泡沫铝元件,可控制最大能耗的变形; 还有将泡沫铝填充入中空钢材中,可以防止部件承受载荷时出现严重的变形. 与此同时,多孔铝兼具了吸音、耐热、防火、防潮等优势.

2. 2 功能材料

2. 2. 1 过滤与分离材料

根据多孔金属的渗透性,由多孔金属材料制作的过滤器可用来进行气- 固、液- 固、气- 液、气-总第209 期 李欣芳,等: 多孔金属材料的制备方法及应用研究 13气分离. 多孔金属的渗透性主要取决于孔的性质和渗透流体的性质. 过滤器的原理是利用多孔金属的孔道对流体介质中粒子的阻碍作用,使得要过滤的粒子在渗透过程中得到过滤,从而达到净化分离的'目的. 铜、不锈钢、钛等多孔金属常用来制作金属过滤器,多孔金属过滤器被广泛应用于冶金、化工、宇航工业、环保等领域.

在冶金工业中,通常用多孔不锈钢对高炉煤气进行除尘; 回收流化床尾气中的催化剂粉尘; 在锌冶炼中用多孔钛过滤硫酸锌溶液; 熔融的金属钠所采用的是镍过滤器,此过程用于湿法冶炼钽粉等.在化工行业中,多孔不锈钢、多孔钛具有耐腐蚀性,常用作过滤器来进行过滤. 比如一些无机酸或有机酸,如硝酸、亚硝酸、硼酸、96!硫酸、醋酸、草酸;碱、氢氧化钠; 熔融盐; 酸性气体,如硫化氢、气态氟化氢; 一些有机物,如乙炔; 此外,还有蒸汽、海水等.

在宇航工业中,航空器的净化装置采用的是多孔不锈钢,制导舵螺中液压油和自动料管路中气体的净化也是采用这种材料,此外还可用于碳氢化合工艺中催化剂的回收.

在环保领域里,主要是利用过滤器来净化烟气、废气及污水处理等方面. 其中要实现气- 气分离,需要对多孔材料的尺寸有更精准的要求,涉及到纳米多孔金属材料的制备工艺及其具有的性能等问题.奚正平等对洁净煤、高温气体净化、汽车尾气净化等技术作了具体的阐述,使用这些技术有利于缓解当前的环保问题.

此外,医学上常用多孔钛可过滤氯霉素水解物,也可作为医疗器械中人工心肺机的发泡板等.

2. 2. 2 消音减震材料

利用多孔金属材料的高孔隙率性能,可制作吸声材料. 在吸声的作用上,通孔材料明显优于闭孔材料. 通过改善声波的传播途径来达到消音的目的,这与多孔金属材料的材质和孔洞的结构密切相关. 因为多孔钛还具有良好的耐高温、高速气流冲刷和抗腐蚀性能,所以被应用到燃气轮机排气系统等一些特殊的工作条件中,这种排气消声装置轻质、高效率、使用寿命长.

段翠云等介绍了吸声材料的分类及应用,探讨了空气流阻和孔隙结构对吸声特性的影响. 王月等制备了孔径为2 ~ 7 mm,孔隙率为80!~ 90!,平均吸声系数为0. 4 ~ 0. 52 的泡沫铝,结果表明孔径越小,孔隙率、厚度越大,吸声性能越好. Ashby MF 等在书中提到了利用泡沫金属的吸声性能可以生产消声器产品.

利用多孔金属材料的抗冲击性,可用来制作减震材料. 多孔金属的应力- 应变( σ - ε) 曲线可以分为三个阶段,即弹性变形阶段、脆性破碎阶段和紧实阶段,进而可以划分为三个区域. 从曲线走势来分析,当多孔金属材料在受到冲击力时,应变滞后于应力,所以其在受到外界应力时首先变形的是它的骨架部分,随着外界应力的增大,骨架易发生破碎,当骨架受到挤压时,应变不再发生很大的变化. 其中破碎阶段的起点为多孔材料的屈服强度. 当受到外加载荷时,孔的变形和坍塌会消耗大量能量,从而使得在较低的应力水平上有效地吸收冲击能. 中间部分区域表现出它的能量吸收能力,左边部分区域面积表现出它的抗冲击能力,面积越大,它所属的性能越好.

2. 2. 3 电极材料

由于多孔金属材料具有高孔隙率、比表面积大等优点,因此常用来制作电极材料,常用的有多孔铅、镍等. 刘培生等结合多孔金属电极的类型和特点,阐述了其制备工艺和性能强化的必要性,值得深思.

多孔铅可用作铅酸电池中反应物的载体,可以填充更多的活性物质,减轻了电池重量,也可以用作良好的导电网络以降低电池内电阻. 轻质高孔隙率的泡沫基板和纤维基板,与传统的烧结镍基板相比有明显的优势,前者有高能量密度、良好的耐过充放电能力、低成本,满足了氢镍、镉镍等二次碱性电池的技术要求. 多孔镍在化学反应工程中用作流通性和流经型多孔电极,因为它除具有上述优点外,还可以促进电解质的扩散、迁移以及物质交换等. 此外,它还可用作电化学反应器.

袁安保等具体分析了镍电极活性物质的结构、性质以及热力学和动力学,而且研究了它的制备工艺及应用,对MH-Ni 电池的开发具有重要意义.孔德帅等制备出了纳米多孔结构的镍基复合膜电极,结果表明,此复合膜在20A·g - 1 的冲放电流密度下,经过1 000 次充放电循环,电容保持率为94!. 近年来,对锌镍电池的研究受到了国内外的热切关注,费锡明等针对锌镍电池制作技术的进展,阐述了当前面临的诸多问题并提出了相应的解决方案,为新型化学电池的进一步研究提供了重要线索.

2. 2. 4 催化载体材料

泡沫金属韧性强、高传导、耐高温、耐腐蚀等性能,可制作催化载体材料. 由于载体本身的比表面积较小,为增大金属载体与催化剂活性组分之间的结合力,需预先在载体上涂上一层氧化物. 然后将催化剂浆料均匀涂抹在泡沫金属片的表面,经过压制成型,再将其置于高温环境中,可以使电厂废弃料得到有效妥善处理.

2. 2. 5 生物医学材料

多孔钛及钛合金在医学上作为修复甚至替代骨组织的材料,需要具有较好的生物相容性,否则会使人体产生不良反应. 而且要与需替代组织的力学性能相匹配. 一般通过控制孔隙的结构和数量来调整多孔钛的强度和杨氏模量. 多孔镁在生物降解和生物吸收上有很好的作用,也可作为植入骨的生物材料.

此外,多孔金属材料具有良好的电磁波吸收性能,可以作电磁屏蔽材料; 对流体流量控制有较高的精准度; 具有独特的视觉效果,利润高,可以用作如珠宝、家具等装饰材料.

3 多孔金属材料的研究现状及存在问题

1) 近些年来对多孔金属的研究多为低熔点、轻金属,其中研究最多的为泡沫铝. 人们利用多孔金属的性能,将其运用到了实际生产和生活中,但对它的其他性能还有待研究和探索. 多孔金属的研究范围、应用领域还需要进一步扩展,如多孔金属在催化领域、电化学领域或其他领域的应用等.

2) 在多孔金属材料的制备方法中,都存在孔隙在金属基体上的数量和分布等关键问题. 孔径尺寸、孔隙率的可控性和孔隙分布的均匀性等性质,以及多孔金属的作用机制还需要进一步探究和完善.

3) 多孔金属材料作为冶金和材料科学的交叉领域,需要强化综合多方面的理论知识,而不是就单一方面进行研究. 在多孔金属材料课题研究过程中,需要在理论分析的基础上,在实践过程中尽可能降低成本,避免材料的浪费,简化工艺,缩短工序.

4) 一些多孔金属材料的开发,还停留在实验室阶段,距工业中大规模生产和应用还存在着很大距离,需要研究者们共同努力,早日实现需求- 设计-制备- 性能- 应用一体化.

TAG标签:#论文 #多孔 #金属材料 #制备 #